Utilizamos cookies propias y de terceros para mejorar nuestros servicios y facilitarle el uso de la web mediante el análisis de sus preferencias de navegación. También compartimos la información sobre el tráfico por nuestra web a los medios sociales y de publicidad con los que colaboramos. Si continúa navegando, consideramos que acepta nuestra Política de cookies .

Actualidad científica

Síguenos
  • Google+
  • RSS
  • Investigación y Ciencia
  • Febrero 2015Nº 461

Matemáticas

Leyes universales

Varios sistemas complejos muy dispares presentan el mismo comportamiento a gran escala. Aunque el fenómeno se ha observado en todo tipo de contextos, su fundamentación matemática sigue planteando numerosas preguntas.

Menear

La matemática moderna nos proporciona una poderosa herramienta para modelizar las situaciones del mundo real, ya se trate de fenómenos naturales, como el movimiento de los planetas o las propiedades fisicoquímicas de un material, o artificiales, como el mercado de valores o las preferencias de voto de un electorado.

Al menos en principio, los modelos matemáticos pueden aplicarse al estudio de sistemas extremadamente complejos, integrados por un gran número de componentes en interacción mutua. En la práctica, sin embargo, solo sabemos resolver con precisión los casos más simples, como aquellos en los que interaccionan únicamente dos o tres agentes. Así, mientras que la derivación matemática de las líneas espectrales del átomo de hidrógeno (en el que un solo electrón orbita en torno al núcleo) puede enseñarse a estudiantes de carrera, las del átomo de sodio (con once electrones) quedan fuera del alcance de los ordenadores más potentes. El problema de los tres cuerpos, consistente en predecir el movimiento de tres masas ligadas por la ley de la gravitación universal, goza de fama por haber sido el único que dio dolores de cabeza a Newton. Al contrario de lo que sucede cuando solo consideramos dos masas, se cree que la solución del problema de los tres cuerpos no puede expresarse de manera simple, y que este solo puede resolverse de forma aproximada mediante algoritmos numéricos. Esa incapacidad para llevar a término los cálculos cuando interaccionan un gran número de componentes ha sido apodada «maldición de las dimensiones».

Sin embargo, cuando el número de componentes se torna lo suficientemente elevado, ocurre algo fascinante: por alguna razón, las propiedades colectivas del sistema vuelven a ser predecibles, quedando gobernadas por leyes simples de la naturaleza. Más notable aún, las leyes macroscópicas que rigen el sistema completo resultan en gran medida independientes de las que describen las interacciones microscópicas entre sus componentes. Podemos reemplazar los constituyentes microscópicos por otros muy distintos y, aun así, obtener el mismo comportamiento a gran escala. Cuando eso sucede, decimos que la ley macroscópica es universal.

Puede conseguir el artículo en:

Artículos relacionados