Moléculas fotoexcitadas

Las moléculas ultrafrías se calientan al interaccionar con el láser que las confina.

THOMAS FUCHS

Debido a nuestro tamaño y nuestra sangre caliente, los humanos rara vez podemos observar la mecánica cuántica en acción. Los físicos lo consiguen usando láseres para enfriar los átomos a temperaturas de hasta billonésimas de grado por encima del cero absoluto. Eso ralentiza su movimiento lo bastante como para verlos obedecer las leyes de la física cuántica. Pero enfriar agregados de varios átomos ha resultado más difícil: esas moléculas ultrafrías tienden a calentarse furtivamente, impidiendo que los investigadores les sigan la pista. Un estudio publicado en ­Nature Physics desvela cómo ocurre este fenómeno, al que los físicos se refieren como «pérdida de moléculas ultrafrías».

Poder ver y controlar mejor las moléculas ultrafrías ayudaría a los científicos a ensamblar una máquina cuántica pieza a pieza, asegura Jun Ye, físico de la Universidad de Colorado en Boulder ajeno al estudio. Pero el calentamiento de las moléculas entorpece el proceso. Pionero de los experimentos con moléculas ultrafrías, Ye advirtió enseguida que algunas de ellas se calentaban al experimentar algún tipo de reacción química.

Yu Liu, investigador de la Universidad Harvard y uno de los autores principales del estudio, explica que su equipo tenía previsto investigar esas reacciones. Pero «lo que vimos durante el proceso nos dio la respuesta a la cuestión» de la pérdida de moléculas ultrafrías, señala. Los investigadores ralentizaron las reacciones químicas entre las moléculas para observar su comportamiento mientras se encontraban en un estado intermedio, que tiene lugar antes de que los reactivos se acaben de transformar en los productos. Dado que las moléculas interaccionan con la luz por medio de fuerzas eléctricas, el equipo empleó láseres para evitar que escaparan.

A temperatura ambiente, no es posible observar ese complejo intermedio debido a su fugaz existencia. Aunque a bajas temperaturas perdura más, los investigadores descubrieron que eso genera un problema: brinda al complejo ultrafrío tiempo para interactuar con la luz láser que lo retiene, lo cual calienta las moléculas y provoca que algunas pierdan su condición de ultrafrías.

El hallazgo permitirá a los físicos evitar los láseres que excitan los complejos intermedios. Y la posibilidad de contemplar la interacción entre estos y la luz es prometedora en sí misma. La química de la Universidad Stanford Nandini Mukherjee, que no participó en el estudio, afirma que investigar esos complejos es un «objetivo que persiguen desde hace tiempo quienes estudian los mecanismos de reacción».

Según Liu, el equipo pretende emplear luz láser para controlar por completo las reacciones. Y el otro autor principal del trabajo, Ming-Guang Hu (también de Harvard), añade que este proceso podría esclarecer por qué las reglas de la mecánica cuántica hacen que las reacciones con moléculas ultrafrías sean distintas a las que se producen a temperatura ambiente. Tras haber resuelto un misterio que llevaba tiempo importunando a los físicos, ahora aspiran a explicar muchos otros aspectos de la química cuántica.

Puedes obtener el artículo en...

Los boletines de Investigación y Ciencia

Elige qué contenidos quieres recibir.