Utilizamos cookies propias y de terceros para mejorar nuestros servicios y facilitarte el uso de la web mediante el análisis de tus preferencias de navegación. También compartimos la información sobre el tráfico por nuestra web a los medios sociales y de publicidad con los que colaboramos. Si continúas navegando, consideramos que aceptas nuestra Política de cookies .

1 de Agosto de 2019
Física nuclear

El último secreto del átomo

Los físicos aún desconocen el origen de la masa y el espín del protón. Un ambicioso proyecto aspira a cartografiar con detalle el interior de esta partícula para averiguarlo.

Detalle del Acelerador Continuo de Electrones (CEBAF) del Laboratorio Nacional Thomas Jefferson, en Virginia. [FLOTO + WARNER]

En síntesis

Los físicos siguen sin entender cómo surgen la masa y el espín de protones y neutrones. Tales propiedades han de emerger a partir de las complejas interacciones entre quarks y gluones, pero el mecanismo preciso sigue siendo un misterio.

Un nuevo proyecto, el Colisionador de Electrones e Iones (EIC, por sus siglas en inglés), propone usar electrones de alta energía para sondear nucleones y confeccionar así un mapa tridimensional del interior de estas partículas.

Actualmente el EIC es el único proyecto en todo el mundo que aspira a conseguir tales objetivos. Sus resultados permitirán obtener un conocimiento mucho más profundo de las interacciones fuertes y de la física nuclear.

El universo observable contiene aproximadamente 1053 kilogramos de materia ordinaria, la mayoría de la cual se concentra en unos 1080 protones y neutrones. Junto con los electrones, estas partículas son los constituyentes de los átomos. Pero ¿de dónde procede la masa de los protones y los neutrones?

La respuesta no es sencilla. Los protones y los neutrones, denominados colectivamente nucleones, se componen a su vez de quarks. Estos últimos se mantienen unidos gracias a los gluones. Sabemos que los gluones tienen masa nula, mientras que la masa de los quarks presentes en un nucleón apenas da cuenta de un 2 por ciento de su masa. Así pues, ¿de dónde proviene el resto?

El anterior no es el único misterio de los ladrillos atómicos. El espín de un nucleón tiene también un origen enigmático: al igual que ocurre con la masa, el espín de los quarks no basta para explicar el del nucleón. Los físicos están convencidos que la masa y el espín de los nucleones tienen su origen en las complicadas interacciones entre quarks y gluones, pero la manera exacta en que esto sucede resulta desconocida. El conocimiento teórico al respecto es limitado, ya que las interacciones entre quarks y gluones se hallan gobernadas por la cromodinámica cuántica, una teoría extremadamente difícil de resolver.

Para progresar en este frente necesitamos datos experimentales. Es aquí donde entra el Colisionador de Electrones e Iones (EIC, por sus siglas en inglés). A diferencia de otros aceleradores de partículas, como el Gran Colisionador de Hadrones (LHC) del CERN, en Europa, o el Colisionador de Iones Pesados Relativistas (RHIC), en EE.UU., donde solo chocan partículas compuestas, el propósito del EIC es hacer colisionar protones y neutrones contra electrones. Estos últimos son partículas puntuales, sin estructura interna, por lo que resultan ideales para usarlas a modo de microscopio y explorar el interior de los nucleones.

El EIC constituye una de las mayores prioridades de la comunidad nuclear de Estados Unidos. Lo más probable es que se construya en el Laboratorio Nacional de Brookhaven, en Nueva York, o en el Laboratorio Nacional Thomas Jefferson, en Virginia. Si el proyecto se aprueba, podría comenzar a tomar datos en 2030. Esta máquina podrá ver cómo los quarks y los gluones contribuyen a la masa y el espín del protón y el neutrón. Y también responderá a otras cuestiones, como si quarks y gluones se concentran en ciertas regiones del nucleón o si, por el contrario, se distribuyen de manera uniforme. Sus datos proporcionarán información esencial para entender la manera en que las partículas elementales interaccionan y dan forma al universo que vemos. Cincuenta años después del descubrimiento de los quarks, estamos finalmente en posición de desentrañar sus secretos.

Artículos relacionados

Puedes obtener el artículo en...

¿Tienes acceso?

Los boletines de Investigación y Ciencia

Elige qué contenidos quieres recibir.