Utilizamos cookies propias y de terceros para mejorar nuestros servicios y facilitarte el uso de la web mediante el análisis de tus preferencias de navegación. También compartimos la información sobre el tráfico por nuestra web a los medios sociales y de publicidad con los que colaboramos. Si continúas navegando, consideramos que aceptas nuestra Política de cookies .

¿Cómo funcionan las mascarillas de protección respiratoria?

La pandemia de COVID-19 ha reavivado el interés por las mascarillas protectoras. ¿Cómo actúan estos dispositivos?

Una mascarilla quirúrgica (izquierda) evita que las gotas de saliva del portador se dispersen al medio. Por su parte, las mascarillas de tipo FFP (derecha), siempre que estén correctamente ajustadas, pueden bloquear las partículas presentes en el aire inspirado. [BRUNO VACARO]

Mascarillas FFP2 estándar, quirúrgicas o incluso de fabricación casera. Estas palabras han invadido nuestro día a raíz de la pandemia de COVID-19. Como físicos, no nos corresponde a nosotros dar recomendaciones sobre su uso para minimizar el riesgo de contagio. Sin embargo, sí podemos aportar información sobre los mecanismos que intervienen en su funcionamiento. Puede que muchos piensen que estos dispositivos actúan principalmente como un tamiz. Sin embargo, nada más lejos de la realidad.

Cuando tosemos, estornudamos, hablamos o simplemente respiramos, producimos aerosoles: partículas de distintos tamaños que acompañan al aire exhalado. Por lo general, se trata de gotículas de agua de entre 1 y 100 micrómetros de diámetro, las cuales se evaporan con rapidez y pueden liberar al aire bacterias (con un tamaño típico de entre 0,5 y 5 micrómetros) y virus (de entre 0,02 y 0,3 micrómetros; el SARS-CoV-2, el virus causante de la COVID-19, presenta un diámetro del orden de 0,1 micrómetros).

Las partículas de mayor tamaño caen al suelo con rapidez. Las más ligeras, en cambio, permanecen en suspensión. En el aire en calma, el tiempo de sedimentación a una altura de 3 metros es de unos 4 minutos para partículas con un diámetro de 20 micrómetros. Ese tiempo se multiplica por cuatro cada vez que el tamaño se divide entre dos. Como consecuencia, las partículas con un diámetro de 5 micrómetros pueden permanecer más de una hora en suspensión.

En una situación de epidemia, el aire puede filtrarse por medio de una mascarilla para proteger nuestro sistema respiratorio de esos aerosoles cargados de patógenos. El primer mecanismo de filtrado que nos viene a la mente es el de un tamiz: como en un colador de cocina, solo las partículas con un tamaño inferior al de los agujeros pasarían a través de la mascarilla.

No obstante, basar un filtro en este principio entraña un inconveniente: cuanto más pequeños sean los agujeros, mejor será el filtrado, pero más difícil se tornará respirar a través de ellos. Para que la mascarilla pueda usarse sin asistencia mecánica, es necesario evitar un filtro con agujeros submicrométricos, el cual sería necesario para bloquear bacterias y virus. Por fortuna, en el proceso intervienen otros mecanismos que permiten atrapar partículas de todos los tamaños.

Para evitar el paso de aerosoles cargados de patógenos, una mascarilla debe tener una capa filtrante lo suficientemente gruesa. También ha de ajustarse bien a la cara a fin de que el aire no entre por los bordes (algo que sí sucede con una simple mascarilla quirúrgica). En particular, si el portador es varón, debe estar afeitado. Estas mascarillas pueden usarse durante unas horas como máximo y luego deben desecharse. [BRUNO VACARO]


Mecanismos de captura

Las mascarillas suelen presentar una fina capa de fibras no tejidas, sino entrelazadas. Cuando una partícula, arrastrada por el aire que pasa a través del filtro, choca con una de esas fibras, se adhiere a ella permanentemente gracias a las llamadas fuerzas de Van der Waals (interacciones entre moléculas distintas de los enlaces químicos). Así pues, el primer paso consiste en entender qué fenómenos pueden conducir a las colisiones entre partículas y fibras.

En las escalas consideradas, es posible demostrar que el flujo de aire está dominado por los efectos de la viscosidad y que es laminar: al acercarse a una fibra, las líneas de flujo de aire se separan, la rodean, y finalmente se unen de nuevo entre sí tras ella.

En una primera aproximación, podemos suponer que las partículas transportadas por el aire siguen dichas líneas. Si la distancia que media entre la fibra y la línea de flujo que transporta la partícula es menor que el radio de esta última, la partícula golpeará la fibra y se adherirá a ella. Este proceso se conoce como captura por intercepción (véase el recuadro «Inercia, intercepción y difusión»).

Ampliar imagen

Sin embargo, las partículas no siguen siempre las líneas de flujo de aire. Esto es especialmente cierto en el caso de las partículas de gran tamaño, las cuales presentan una gran inercia debido a su masa. Al igual que un coche que avanza demasiado rápido en una curva, en lugar de rodear la fibra a la par que el aire, las partículas más grandes continuarán «en línea recta» y chocarán contra ella. Este fenómeno se denomina captura por inercia.

Por último, las partículas muy pequeñas tampoco seguirán las líneas de flujo, sino que se verán sujetas a un movimiento browniano debido a los constantes impactos con las moléculas del aire, en permanente agitación térmica. Por tanto, describirán trayectorias erráticas y, cuando pasen cerca de una fibra, podrán difundirse y adherirse a ella. Al contrario de lo que ocurre con la captura por inercia, cuanto menor sea la partícula y más lento el flujo, mayor será el efecto de la captura por difusión.

Además de estos tres mecanismos, las partículas con carga eléctrica pueden experimentar también capturas electrostáticas. Al comparar todos estos fenómenos, puede comprobarse que la eficiencia de un filtro resulta mayor para las partículas muy pequeñas o muy grandes, y menor para las de tamaño intermedio.

Tipos de mascarillas

En la práctica, la parte filtrante de las mascarillas suele estar compuesta de fibras de polipropileno con un diámetro de unos 5 micrómetros, las cuales dejan poros de entre 10 y 20 micrómetros, mucho mayores que el tamaño típico de virus y bacterias. La eficacia del filtrado depende por tanto del espesor del filtro: cuanto más grueso sea, mayor será el número de eventos de captura que acabamos de describir.

No obstante, un filtrado eficaz debe enfrentarse a dos problemas: por un lado, dificulta la respiración; por otro, si la mascarilla no se encuentra perfectamente ajustada a la cara, el aire entrará por el espacio adyacente a los bordes. Así pues, la elección de la mascarilla adecuada plantea necesariamente un compromiso entre varios requisitos: calidad del filtrado, facilidad de uso y comodidad del portador.

Existen dos tipos de dispositivos. Por un lado están las mascarillas quirúrgicas, cuyo principal cometido es evitar que las grandes partículas emitidas por el portador, como las gotas de saliva, se dispersen al medio. Estas mascarillas no buscan filtrar las pequeñas partículas presentes en el aire; de hecho, su eficiencia al respecto es muy pobre.

Las pruebas estandarizadas suelen realizarse midiendo qué porcentaje de partículas de 0,06 micrómetros (el tamaño típico de un virus) pasan a través de una mascarilla cuando el flujo se fija en 85 litros por minuto, característico de una respiración muy precipitada. Con las mascarillas quirúrgicas, las tasas varían ampliamente: del 4 al 90 por ciento, debido sobre todo al paso del aire por los bordes de la mascarilla. Estas no resultan satisfactorias en el caso de un contacto prolongado con los pacientes, pero sí pueden serlo en otras circunstancias, ya que bloquean las gotículas de saliva en ambos sentidos y evitan que nos toquemos la cara con las manos.

Otro tipo de dispositivo es el «respirador protector». Estos reciben el nombre genérico de FFP, por las siglas en inglés de «pieza facial filtrante» (filtering facepiece), al que acompaña un número que indica el grado de filtrado. Estos respiradores sí están diseñados para filtrar el aire y reducir el número de partículas y gérmenes que inhala el portador.

Por ejemplo, las mascarillas FFP2 y FFP3 filtran, respectivamente, el 94 y el 99 por ciento de las partículas con un diámetro medio de 0,06 micrómetros, al tiempo que presentan fugas totales del exterior al interior (incluidos el filtrado y sellado de las juntas faciales) de menos del 8 y el 2 por ciento del aire inhalado. Esto requiere que se ajusten bien a la cara, lo que suele conseguirse con dos gomas elásticas alrededor de la cabeza y un clip en la nariz.

Con todo, dado que para lograr un filtrado eficiente las mascarillas deben ser gruesas y ajustadas, ofrecen resistencia al paso del aire. Esta se mide evaluando la sobrepresión necesaria para asegurar el flujo, la cual es del orden de 2 milibares para una FFP2 con respiración precipitada. Esto puede parecer poco, pero resulta del mismo orden de magnitud que las variaciones de presión que tienen lugar en los pulmones. Por otro lado, el uso prolongado de mascarillas en situaciones de estrés puede provocar dolores de cabeza. Por ello, algunas se encuentran equipadas con válvulas que facilitan la exhalación.

 

PARA SABER MÁS

Lessons learnt over 30 years of air filtration in the nuclear industry. J. Vendel et al. en Journal of Physics: Conference Series, vol. 170, art. 012026, 2009.

Modes of transmission of virus causing COVID-19: Implications for IPC precaution recommendations. Organización Mundial de la Salud, 29 de marzo de 2020.

 

Encuentra aquí todos los contenidos de Investigación y Ciencia sobre la pandemia de COVID-19. También puedes acceder a los artículos publicados por Scientific American y otras de sus ediciones internacionales a través de esta web.

Puedes obtener el artículo en...

Los boletines de Investigación y Ciencia

Elige qué contenidos quieres recibir.