Utilizamos cookies propias y de terceros para mejorar nuestros servicios y facilitarle el uso de la web mediante el análisis de sus preferencias de navegación. También compartimos la información sobre el tráfico por nuestra web a los medios sociales y de publicidad con los que colaboramos. Si continúa navegando, consideramos que acepta nuestra Política de cookies .

Actualidad científica

  • 25/09/2017 - Óptica

    Ver lo invisible

    Una nueva técnica de bajo coste abre la puerta a detectar objetos envueltos en niebla o polvo.

  • 24/09/2017 - Reproducibilidad

    Ni 0,05 ni ningún otro umbral fijo: prosigue la discusión sobre p

    Un grupo de científicos discrepa de la propuesta de adoptar un umbral fijo que haga más difícil atribuir a un resultado la condición de estadísticamente significativo.

  • 22/09/2017 - GENÉTICA

    Origen evolutivo del plegamiento del ADN

    El modo en que el ADN de las arqueas se compacta tiene muchos puntos en común con el de los eucariotas.

  • 21/09/2017 - Evolución humana

    ¿Cuántos neandertales había?

    La arqueología y la genética han dado respuestas muy diferentes a esa pregunta. Un nuevo estudio las reconcilia y descubre la historia de aquella antigua gente, en la que rozaron alguna vez, mucho antes de la definitiva, la extinción.

  • 20/09/2017 - BIOLOGÍA REPRODUCTIVA

    Macrófagos testiculares, guardianes de la fertilidad masculina

    Responsables de eliminar los patógenos de nuestro organismo, estas células moderan también la respuesta inmunitaria para evitar la destrucción de los espermatozoides.

Síguenos
  • Google+
  • RSS
  • Investigación y Ciencia
  • Enero 2016Nº 472

Información cuántica

Los límites físicos de la privacidad

Las leyes cuánticas implican que la criptografía segura es posible bajo supuestos asombrosamente débiles.

Menear

El escritor estadounidense y criptógrafo aficionado Edgar Allan Poe escribió una vez: Podemos afirmar categóricamente que el ingenio humano no es capaz de inventar ningún código secreto que el propio ingenio humano no pueda descifrar». ¿Es cierto? ¿Estamos condenados a perder nuestra privacidad sin importar con cuánto ahínco tratemos de preservarla?

Si nos guiamos por la historia de las comunicaciones secretas, la respuesta debería ser un rotundo sí. Numerosos ejemplos ilustran hasta qué punto los más brillantes esfuerzos para cifrar mensajes han sido igualados por el ingenio de los espías. Incluso hoy, lo mejor que la criptografía moderna puede ofrecernos es una seguridad limitada. Por ejemplo, nos garantiza que romper el sistema RSA, uno de los métodos criptográficos de clave pública más extendidos, resulta al menos tan difícil como factorizar un número entero muy grande. Pero ¿es realmente tan complicado factorizar números enteros? No con un ordenador cuántico. De hecho, tanto el sistema RSA como otros muchos de clave pública se tornarán vulnerables el mismo día en que se construya el primer ordenador cuántico. Probablemente pasarán décadas antes de que eso ocurra, pero ¿quién puede asegurar que sucederá así? Hoy por hoy, la seguridad de nuestros mejores algoritmos de cifrado solo se apoya en la lentitud del progreso tecnológico.

Aun así, los requisitos para una comunicación cien por cien segura se conocen desde hace tiempo. Si evitamos la jerga técnica, todo lo que necesitamos para diseñar un cifrado perfecto es una secuencia privada de bits aleatorios. Dicha secuencia, denominada clave criptográfica, solo debe ser conocida por el emisor y el receptor, a quienes llamaremos Alicia y Benito. Una vez que ambos dispongan de la clave, podrán comunicarse en secreto mediante un método muy sencillo conocido como «libreta de un solo uso». En concreto, la clave se convierte en un mensaje con significado cuando Alicia le dice públicamente a Benito cuáles de sus bits han de invertirse [para una introducción breve y muy accesible, véase «Criptografía segura», por Agustín Rayo; Investigación y Ciencia, febrero de 2015].

Si una espía, a la que llamaremos Eva, intercepta la comunicación pública, jamás podrá inferir el contenido del mensaje por más que sepa qué técnica de cifrado han empleado Alicia y Benito. Pero, para que todo funcione, es imprescindible que la clave se componga de bits verdaderamente aleatorios, que estos nunca se reutilicen para cifrar otro mensaje, y que la clave sea transmitida de forma completamente segura a Alicia y a Benito, quienes podrían hallarse a kilómetros de distancia. Aunque tal vez no resulte sencillo, todo esto es posible. Y no deja de ser asombroso lo bien que se presta la física cuántica a la tarea de distribución de claves.

Puede conseguir el artículo en:

Artículo individual

Artículos relacionados

BOLETÍN ACTUALIDAD¿Quieres estar al día de la actualidad científica? Recibe el nuevo boletín de actualidad con nuestros mejores contenidos semanales gratuitos (noticias y posts). Si lo deseas también puedes personalizar tu suscripción. BOLETÍN ACTUALIDAD¿Quieres estar al día de la actualidad científica? ¡Recibe el nuevo boletín de contenidos gratuitos! Ver más boletines.